

Hi2602 多功能平均电流型 LED 恒流驱动器

1. 特性

- 宽输入电压: 5-60V
- 平均电流工作模式
- 高效率:最高可达95%
- 输出电流可调范围 60mA~2A
- 内驱 80m Ω /60V 的 MOS
- 内置 5V 稳压管
- 固定工作频率 130KHz
- 恒流精度<±5%
- 支持 MODE 半亮长亮切换
- 封装: SOP8

2. 应用领域

- 景观亮化洗墙灯
- 汽车照明
- LCD 背光照明
- 建筑照明

3. 说明

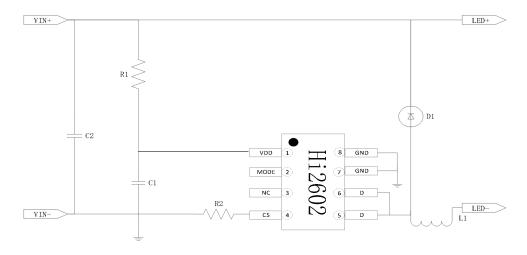
Hi2602 是一款外围电路简单的多功能平均电流型 LED 恒流驱动器,适用于 5-40V 电压范围的降压 BUCK 大功率调光恒流 LED 领域。

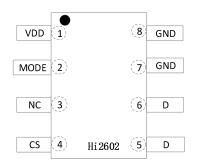
芯片集成了高低亮功能,可以通过 MODE 端口实现高低亮功能切换。在 MODE 引脚悬空或接地时,为高亮模式, MODE 引脚接高电平时,为 1/2 电流的低亮模式。

此外芯片内部集成了 VDD 钳位电路以及过温降 电流保护,减小了外围电路元件数量并提高了系统的 可靠性。

芯片采用我司专利的平均电流控制算法固定频率 140kHz 的 PWM 工作模式下,输出电流恒流精度 ≤±5%,且输出电流受输入输出电压、系统电感的影响小,芯片内部集成环路补偿,外围电路简洁,系统更加稳定可靠。

4. 应用电路




图 4.1 Hi2602应用电路

备注: 封装为常见的 SOP8 大功率散热封装, 散热效果非常优秀

1 of 7

5. 管脚配置

* (5、6 PIN 为散热引脚,必须进行散热处理) 图 5.1 Hi2602

编号	管脚名称	功能描述
1	VDD	芯片电源
2	MODE	高低亮选择脚。MODE 悬空/接地 LED 全亮,MODE 接高电平 LED 半亮输出。
3	NC	悬空脚
4	GND	芯片地
5/6	D	内置功率 MOS 管 Drain 端
7/8	CS	内置功率 MOS 管的 Source 端

6. 极限工作参数

符号	说明	范围	单位
VDD	芯片工作电源	-0.3~7.0	V
VCS	CS 输入电压	-0.3~7.0	V
VMODE	MODE 压	-0.3~7.0	V
TA	工作温度	-40~125	°C
TSTG	存储温度	-40~150	°C
НВМ	人体放电模式	>2	KV

7. 结构框图

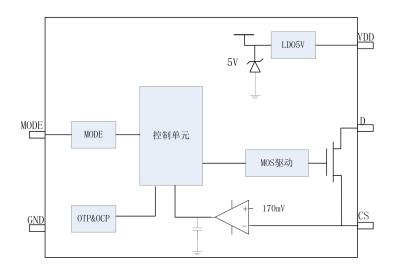


图 7.1 结构框图

8. 电气特性

(除非特殊说明,下列条件均为 T_A=25℃)

m P	说明	测试条件	1614			34 L3.	
符号			7K.1.	ハエ	*W/\	単位	
VDD 工作部分	}}						
I _{DD}	工作电流	Fsw=140kHz	-	1.8	-	mA	
ΙQ	静态电流	VDD=5V		300		uA	
VDD_clamp	VDD 钳位电压	I _{VDD} <10mA	-	5.4	-	V	
V _{UVLO}	欠压保护电压	Rising		3.4		V	
VDD_HYS	欠压保护迟滞			0.2		٧	
cs 输入部分	cs 输入部分						
Vcs	过流判断阈值			400		mV	
V_{REF}	恒流控制电压		162	170	178	mV	
T _{LEB}	LEB 时间		-	200	-	nS	
Fsw	工作频率			140		kHz	

流明芯智能科技(深圳)有限公司

2019-11-22 V1.2

符号	说明	测试条件	范围			34 tz-	
			最小	典型	最大	単位	
MODE 端口	MODE 端口						
R_MODE	MODE 下拉电阻			40		Kohm	
过温保护	过温保护						
T _{OTP}	过温保护阈值	过温降电流的方式-	-	140	-	°C	
Topt	工作温度		-40		125	°C	
Tstg	存储温度		-40		150	°C	

9. 应用说明

Hi2602 围电路简单的多功能平均电流型 LED 恒流驱动器,适用于 5-60 电压范围的非隔离式恒流 LED 驱动领域。通过对 CS 端口的电流采样来实现精准的电流控制。

9.1. 输出电流

输出电流由芯片内部的误差放大器采样并且和内部的 0.17 行比较以及误差放大,从而实现系统的恒流控制,输出电流公式如下:

$$I_{out} = \frac{0.17V}{RCS}A$$

其中 Iout 为输出电流, Rcs 为系统的检流电阻。

9.2. 芯片启动

系统上电后通过启动电阻对连接于电源引脚 VDD 的电容充电,当电源电压高于 4.2V 后,芯片电路开始工作,直到 VDD 端口电压稳定达到钳位电压 5.2V 左右,芯片的供电电流主要有 VDD 端口接入的电阻 R1 提供,对于不同的功率 MOS,需要调整该电阻的大小以适应系统的电流损耗,MOS 越大,电阻越小,输入电压越低,需要的电阻越小。

9.3. MODE 设置

通过给 MODE 设置不同电平,可以让芯片实现不同的亮度功能。当 MODE 外接电阻拉高至 VDD 时, 芯片进入 1/2 低亮模式, MODE 悬空或接地时,芯片进入高亮工作模式。

9.4. 电感选择

由于芯片原理设定,不同的电感值,会影响到电感纹波大小及连续或非连续工作模式。若工作在临界流明芯智能**科技**(深圳)有限公司 2019-11-22 V1.2

模式时的电感值为:

$$L_{BCM} = \frac{V_{LED} \times (Vin - V_{LED})}{2 \cdot Vin \cdot I_{LED} \cdot fsw}$$

为保证系统的输出恒流特性,应用当中电感值的选择要大于 L_{BCM},电感电流应工作在连续模式。

9.5. 续流二极管

注意续流二极管的额定平均电流应大于流过二极管的平均电流。平均电流计算公式如下:

$$I_{\textit{avg_diode}} = I_{\textit{OUT}} \times \frac{t_{\textit{OFF}}}{t_{\textit{ON}} + t_{\textit{OFF}}}$$

注意,二极管应具有承受反向峰值电压的能力。建议选择反向额定电压大于 VIN 的二极管。为了提高效率,建议选择快恢复的肖特基二极管。

9.6. 供电电阻

芯片的主要是通过一个供电电阻 R3 到芯片 VDD 提供芯片的工作电流,通常情况下, VDD 满足

$$VDD = VIN - I_D \times R_3$$

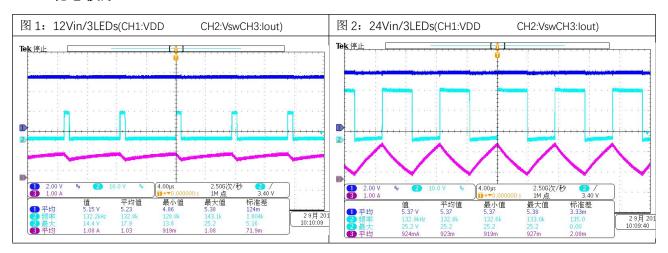
公式中可以看出,R1 过大会导致系统供电不足,过小则会导致功耗过大、芯片过热。而且该电阻的选择还与开关频率有一定的关系,系统频率越高,需要R1 的阻值越小。

下面以一个输出电流为 1A 的系统给出设计指导, 电感为 33uH,

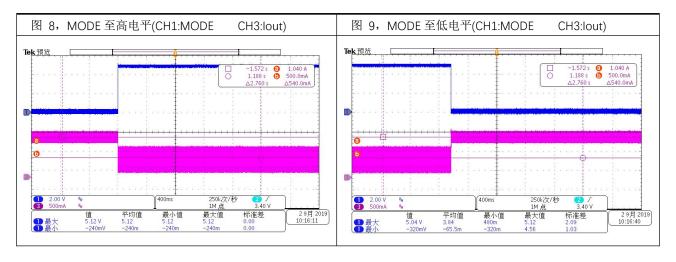
VIN (V)	5	12	24	36
R3(Ω)	100	3K	3~6K	3~9K

9.7. VDD 旁路电容

VDD 引脚需要并联一个 1.0uF 以上的旁路电容,电容的大小选择和驱动 MOS 的大小有关系,MOS 越大,需要的旁路电容也越大。PCB 布板时,VDD 电容需要紧挨着端口布局。


9.8. 过温保护

当芯片温度过高时,系统会限制输入电流峰值,典型情况下当芯片内部温度超过 **140** 度以上时,过温调节开始起作用;随温度升高输入峰值电流逐渐减小,从而限制输入功率,增强系统可靠性。



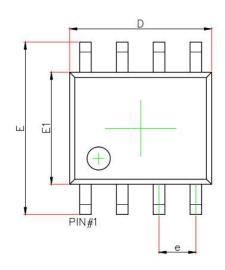
10. 典型工作波形

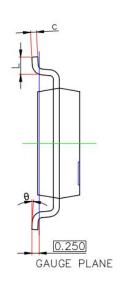
10.1. 稳态波形

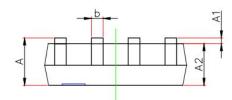
10.2. MODE 调光波形

11. PCB 设计注意事项

一个好的 PCB 设计能够最大程度地提高系统的稳定性、终端产品的量产良率。为了提高 Hi7005 系统 PCB 的设计水准,请尽可能遵循以下布局布线规则:


- 1. 芯片 D 端或 MOSFET Drain 端与续流二极管、功率电感的布线覆铜尽可能长度短、线宽大;
- 2. 芯片 D 端或 MOSFET Source 端与 CS 检流电阻的布线覆铜, CS 检流电阻与输入电容 GND 的布线覆铜,都应尽可能长度短、线宽大;
- 3. 芯片的 VDD 电容靠近芯片布局,且 VDD 电容的 GND 端与 CS 检流电阻 GND 端保持单点连接;
- 系统的输入电容尽可能靠近 Hi2602 系统布局,保证输入电容达到最好的滤波效果;


流明芯智能科技(深圳)有限公司


2019-11-22 V1.2

12. 封装信息

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270 (BSC)	0.050	BSC)	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

7 of 7