

Hi512E 小功率差分并联 DMX512 解码恒流驱动

3. 产品说明

1. 产品特性

- 4路恒流输出,每路最大 60mA
- 高辉高刷,刷新频率 250/4K/8K/16KHz 可配
- 专利 GAMMA 平滑技术,低灰渐变更平滑
- 可编程的低辉开启补偿
- 伽玛可调, 1.0/2.0/2.2/2.5
- 支持自动编址
- 解码输出降 EMI 优化,降低过 EMC 成本
- 恒流端口耐压 36V
- 1/2/3/4 通道数量可配置
- 内置 RS485 接收模块
- 内置 EEPROM, 4096 寻址, 三重备份
- 专利的抗干扰增强
- 内置 5V 稳压电路,工作电压 5-36V
- 宽范围波特率自适应, 0.2-2Mbps
- 过温降电流功能
- 封装: SOP16 / SSOP10

2. 应用范围

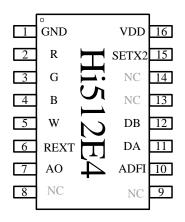
- 小功率点光源
- 条形灯

4. 芯片选型:

Hi512E 是一款支持最高可达 200Kbps -	2Mbps
的并联差分 DMX512 协议解码恒流驱动	芯片,
支持 4 路恒流输出,支持 1/2/3/4 通道数	量可配,
波特率自适应范围广, 支持自动编址,	兼容性
好,使用方便可靠。	

内置 RS485 差分模块, 抗干扰强, 传输距离远。

内置 EEPROM,支持 4096 寻址范围,且写址后不用重新上电,支持 3 重备份并自动纠错。


恒流输出通道对 EMI 进行优化,方便方案认证。 此外高温降电流的过温处理方式避免了传统过 温关闭输出带来的灯闪问题,不影响效果。

本芯片输出端口支持 16KHz 刷新率,手机拍摄 无频闪。

型号	建议电流范围	通道数	封装形式	编带数量(颗/盘)	建议热功率
Hi512E4	17-60mA	4	SOP16	4000	0.5W
Hi512ES	17mA	4	SSOP10	4000	0.5W

5. 管脚配置

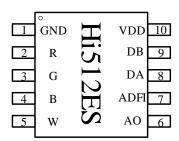


图 5.1 管脚图

空 HII <i>力</i> 利力	引脚编号	크	T-1 -4K-1-# '-1-
管脚名称	Hi512E4	Hi512ES	功能描述
GND	1	1	芯片地
R	2	2	红灯通道驱动输出
G	3	3	绿灯通道驱动输出
В	4	4	蓝灯通道驱动输出
W	5	5	白灯通道驱动输出
REXT	6	-	电流设置(默认 17mA,最大 60mA)
AO	7	6	地址输出
NC	8、9、13、14	1	无定义,悬空
ADFI	10	7	地址标志信号输入
DA	11	8	差分输入正极(A)
DB	12	9	差分输入负极(B)
SETX2	15	-	电流输出加倍(接高),默认拉低
VDD	16	10	芯片电源

2023-04-13 V3.3

6. 结构框图

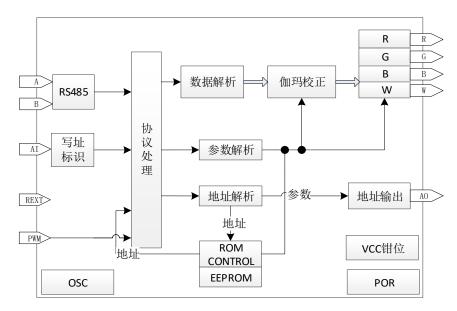


图 6.1 结构原理框图

7. 极限工作参数

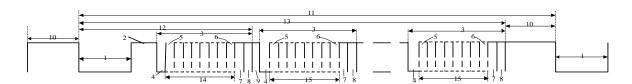
符号	说明	范围	单位
V _{cc}	逻辑电源电压	-0.4~6.3	V
V _{IN}	逻辑输入电压	-0.4~VCC+0.5	V
V _{OUT}	输出端口耐压	-0.4~VCC+0.5	V
T _{opt}	工作温度	-40 - 85	$^{\circ}$
T _{stg}	储存温度	-45 - 150	${\mathbb C}$
ESD	抗静电 ESD(HBM)	>4K	V

2023-04-13 V3.3

8. 电气特性

(除非特殊说明,下列条件均为 T_A=25℃)

符号	说明	油土大久 从		范围		单位
47.5	医奶	测试条件 	最小	典型	最大	早 仏
VCC	芯片电源钳位电压	12V 输入加 400Ω 电阻	5.5		6.3	V
T_osc	内部振荡器时钟周期	VCC=5V	50		65	ns
R_ADFI	地址标识上拉电阻	VCC=5V		16K		Ω
I_AB	差分输入电流	VCC=5V		25		uA
VAB_CM	DA DB 脚共模电压	VCC=5V		5		V
VAB	DA DB 脚工作范围	VCC=5V	-0.4		5	V
V_delay	DA,DB端口迟滞电压			200		mV
F_LED	LED 扫描频率	VCC=5V	250		16K	Hz
I_VCC	芯片工作电流	VCC=5V,REXT 悬空		5		mA
AO_H	地址标识上拉电流	VCC=5V,DOUT=0V		60		mA
AO_L	地址标识下拉电流	VCC=5V,DOUT=5V		60		mA
R _{AB}	差分输入阻抗(对地)			220K		Ω
V_{th}	差分输入临界电压			0.2		V
V _{cm}	差分输入共模电压				6	V
I CIVIN	松山祭脚山沟	通过 REXT 或 EEP 内部			60	mA
I_SINK	输出管脚电流 	参数设置			60	IIIA
VDS	输出端口耐压			30		V
I_SINK(min)	输出管脚默认电流	REST 悬空		17		mA
VDS_I	输出恒流拐点	IOUT=60mA		0.6		V
R _{TH} (SSOP10)	封装热阻	Hi512ES	60		80	°C/W
R™(SOP16)	封装热阻	Hi512E4	80		100	°C/W
T _{OVT}	过温处理	降电流的方式		115		$^{\circ}$


9. 开关特性

 加卫	符号 说明 测试条件		范围			* 64
भ उ	<i>ж.</i> уз	测试条件	最小	典型	最大	単位
T_DELAY	信号延时	VDD=5.2V			300	ns
T_on	IOUT 开启延时	VCC=5.2V			65	ns
T_OFF	IOUT 关闭时间	VCC=5.2V			60	ns
C_in	输入电容	VCC=5.2V		10		рF

注: 严禁让芯片长时间工作在过温状态

10. 协议说明

芯片兼容标准 DMX512(1990)协议及拓展 DMX512,数据传输由 250K-1.6Mbps 自适应解码。其波形如下图所示。A/B 线是差分线,图示为 A 线的波形,B 线与之相反。

No.	Description	Min	Тур	Max	Unit
-	Bit Rate	-	250	-	kbit/s
-	Bit Time	3.92	4	4.08	us
-	Minimum Update Time for 513 slots	-	22.7	-	ms
-	Maximum Update Rate for 513 slots	-	44	-	/s
1	"SPACE" for BREAK	88	1	-	us
2	"MADK" After DDEAK (MAD)	8	-		us
2	"MARK" After BREAK (MAB)			<1.00	s
3	Slot time	43.12	44	44.88	us
4	Start bit	3.92	4	4.08	us
5	LSB	3.92	4	4.08	us
6	MSB	3.92	4	4.08	us
7	STOP	3.92	4	4.08	us
8	STOP	3.92	4	4.08	us
9	"MARK" Time Between slots	0	1	<1.00	s
10	"MARK" Before BREAK (MBB)	0	-	<1.00	S

广晟微半导体(深圳)有限公司

2023-04-13 V3.3

Add WeChat

No.	Description	Min	Тур	Max	Unit
11	BREAK to BREAK Time	1196	-		us
11	DREAR (U DREAR TITLE			1.00	s
13	DMX512 Packet	1196	-		us
13	DIVIAS 12 Packet			1.00	s
14	START CODE (Slot 0 Data)	31.36	32	32.64	us
15	SLOT 1 DATA	31.36	32	32.64	us

备注:

- 1. 字段共 11 位, 0 start 位低电平, 8 个 bit 位, 2 个 stop 位高电平
- 2. start 位,数据位,stop位,宽度应相同,以免误采样
- 3. Start code 段用于波特率自适应检测,故其宽度应和后面的每个数据段宽度相同,以免误采样

11. 应用说明

11.1. 典型应用

芯片支持高灰高刷,刷新频率最高可达 16KHz,手机以及摄像机拍摄无频闪,支持独家专利的降 EMI 技术以及抗干扰技术。

恒流应用:

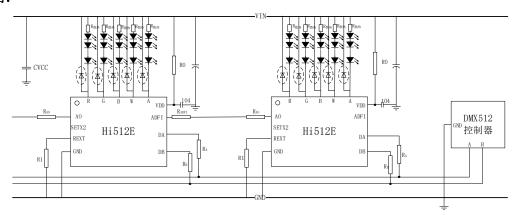


图 11.1.1 典型应用方案 1

● 图中 R0 是 VDD 的供电电阻,芯片通过 R0 供电,尽量保证流过 R0 供给芯片的电流超过 I_D (12mA) 以确保芯片在满负荷的时候也能工作。

芯片的主要是通过一个供电电阻 RO 到芯片 VCC 提供芯片的工作电流,通常情况下:

 $R_0 = (VIN - VDD) \div I_D$ 其中 VDD 选择 5.5V

Add WeChat

下面给出常规应用的设计指导:

VIN (V)	5	12	24
R0 (Ω)	20	0.5K	1.5K

实际工程应用中,针对 VIN 值的选择,应考虑尾灯上的线损,以 24V 为例,若考虑线损,建议 1.3K。

- RA RB 为差分信号的输入保护电阻,目的是防止 DA 以及 DB 端口损坏,一般根据需要选择 3K~10K 的阻值。
- RADFI 电阻为地址标识脚输入保护电阻,目的是保护地址标识输入端口不会损坏,阻值选择为 500~1K。
- RAO 电阻为地址标识输出保护电阻,目的是保护地址标识输出端口不会损坏,阻值选择为500~1K。
- REXT 电阻为输出电流的配置电阻,悬空时输出电流默认为 17mA,需要大电流配置的时候可以根据 11.2 给出的公式指导计算输出电流值。
- 虚线框为可选项,客户根据实际案子酌情选择,具体请与我司 FAE 沟通确认。

11.2. 输出恒流配置

R,G,B,W 是恒流输出端口,输出电流通过 REXT 端口电阻配置,最大电流可达 60mA。当 REXT 端口悬空时默认输出电流为 17mA;当 REXT 端口对地串接电阻时,端口恒流值通过以下公式确认:

$$I_{OUT}(mA) = 17 + \frac{545}{R_{EXT}(K\Omega)}$$

如上公式所示,若需要配置恒流值为 60mA,则 R_{EXT} 设置为 $12K\Omega$ 。

除此以外,芯片还可以通过控制器或解码器单独配置每一路的电流,每一路64级可调。

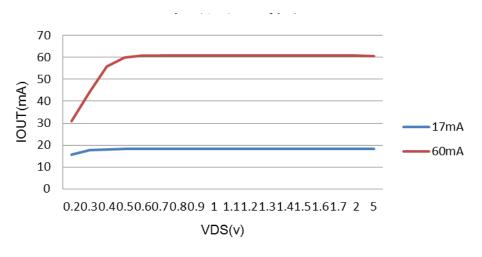


图 10.1 恒流拐点

Add WeChai

11.3. 亮灯状态设置

本芯片写参数或者写地址成功后亮灯态均为首灯亮红灯(25%),其余亮绿灯(25%)的模式,状态一直保持到重新上电或者接收到控制器数据才释放。

本芯片还可支持无信号默认色可配,方便客户实现各种需求,比如可以在无信号的情况下,通过使用本芯片的灯光系统显示一幅预先设置好的图案。

11.4. 电流通道配置:

本芯片可以通过控制器或解码器配置电流通道,可以配置 1/2/3/4 通道:

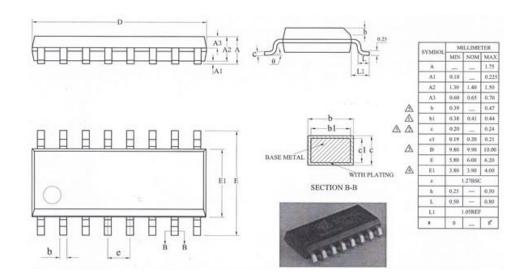
- 截取 1 字段, 配 1/2/3/4 字段
- 截取 2 字段, 配 1/2 字段, 配 3/4 字段
- 截取3字段,配1字段,配2字段,配3字段
- 截取4字段,配1字段,配2字段,配3字段,配4字段

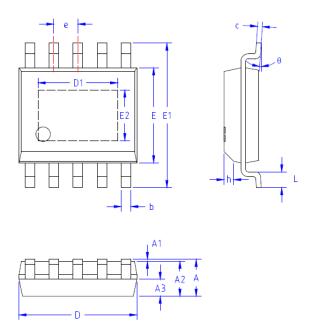
11.5. GAMMA 曲线以及频率:

本芯片支持 4 条 GAMMA 曲线,分别是 GAMMA1.0/2.0/2.2/2.5,方便客户针对不同的场景以及要求来配置显示效果。

11.6. 支持热插拔的自动编址

本芯片支持下发命令启动自动编址功能,和上电自动编址功能。为方便工程使用,本芯片的自动编址功能针对头灯不进行编址,尾灯在头灯基础上按通道数累加。如果已经布好的工程上启用了自动编址,则不会因为地址线断开而出现编址错误,便于在灯具维护中随时插入新的灯具,此外本司的自动编制技术支持热插拔,不需要所有的系统统一上电,可以任意顺序上电。


如果需要使用自动编址功能,建议区分出头灯,如果无法区分,则建议灯具出厂时将地址初始化为头灯地址。当出现地址线没有接好或者断开的情况,断点灯点会显示红灯,方便工程上面查找问题。



12. 封装信息

12.1. Hi512E4

12.2. Hi512ES

机械尺寸/mm					
字符	最小值	典型值	最大值		
Α	1,500	1.600	1.700		
A1	0.000	-	0.100		
A2	1.350	1.450	1.550		
A3	0.650	0.700	0.750		
b	0.300	-	0.500		
C	0.190	-	0,250		
D	4.800	4.900	5.000		
D1	3,200	3,300	3,400		
E	3.840	3.940	4.040		
E1	5.900	6.000	6.100		
E2	2,000	2,100	2,200		
е	e 1.00 (BSC)				
h	0.250	-	0.500		
L	0.520	-	0.720		
θ	0°	-	8°		

