

Hi9216 大功率快速动态响应异步降压 DC-DC 控制器

1. 特性

- 工作电压范围 8-100V
- 无需外部环路补偿
- 恒压精度: ≤±3%
- 3A 峰值电流
- 开关频率 350KHz
- 欠压保护
- 过温保护
- 输出短路保护
- 封装: ESOP8

2. 应用领域

- 电动自行车/摩托车转换器
- 工业控制系统
- 非隔离式 PoE、IP 摄像头
- GPS 定位器

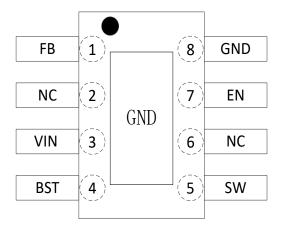
3. 说明

Hi9216 是一款大功率输出、动态响应快的异步降压 DC-DC 控制器,适用于 8-100V 电压输入。

Hi9216 采用我司专利算法控制,实现芯片快速动态响 应, 平衡动态和输出电压纹波的需求, 以达到快速的 动态响应和较低的输出纹波。

支持过温保护、短路保护、欠压保护、软启动功能, 性能可靠。

V1.2


VERSION:

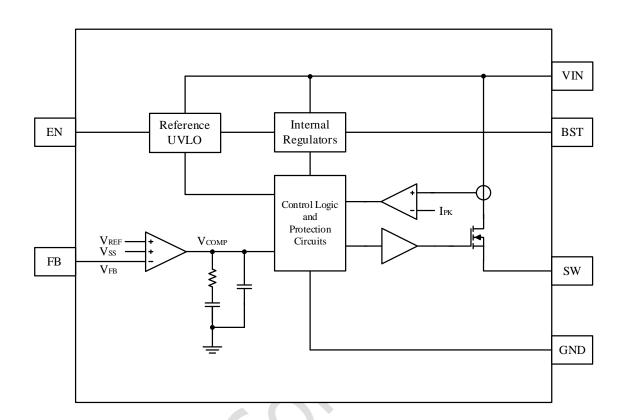
4. 芯片选型及订购

型号	最大输出电流	驱动方式	封装形式	最高耐压	包装方式	数量(颗/盘)	订购号
Hi9216	2A	内置 MOS	ESOP8	100V	编带	4000	Hi9216EP08AEXX

5. 管脚配置

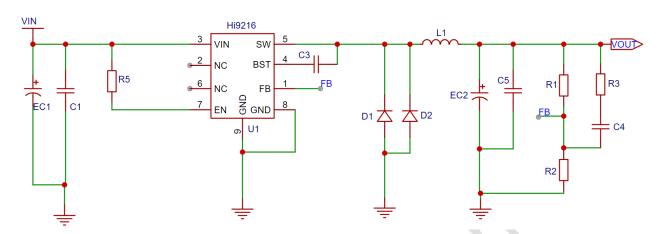
编号	管脚名称	功能描述
1	FB	输出电压采样反馈
2	NC	
3	VIN	供电输入
4	BST	自举电容
5	SW	开关结点端口
6	NC	
7	EN	使能脚
8&EP	GND	芯片地

图 5.1 Hi9216 (ESOP8) 管脚


6. 极限工作参数

符号	说明	范围	单位
VIN	外部供电输入	-0.3~120	V
SW	输出电流检测正极	-0.3~120	V
BST	输出电流检测负极	-0.3~120	V
低压管脚	EN、FB	-0.3~6	v
$R_{^{_{\scriptscriptstyle{ heta}}}\mathrm{JA}}$	PN 结到环境的热	65	°C/W
PD	最大承受功耗(注1)	1.0	W
TSTG	存储温度	-40~150	°C
TA	工作温度	-40~125	°C
ESD	HBM 人体放电模式	>2	KV

注 1: 温度升高最大功耗一定会减小,这也是由 T_{JMAX} , $R_{\theta JA}$ 和环境温度 T_{A} 所决定的。最大允许功耗为 $P_{D=(T_{JMAX}-TA)/R_{\theta JA}}$ 或是极限范围给出的数值中较低值。


7. 结构框图

Add WeChat

8. 应用电路

图一: 电路原理图

常规输出参数推荐表:

Vo (V)	Io(A)	R1 (KΩ)	R2 (K Ω)	R5(Ω)	C3 (uF)	EC1 (uF)	EC2 (uF)	D1	L1 (uH)
3. 3	1.5	62	20	1M	0. 1	10	100	SS510	22uH
5	1.5	62	12	1M	0. 1	10	100	SS510	22uH
9	1.5	62	6. 2	1M	0. 1	10	100	SS510	22uH
12	1.5	150	11	1M	0. 1	10	220	SS510	22uH
24	1.5	160	5. 6	1M	0. 1	10	220	SS510	22uH

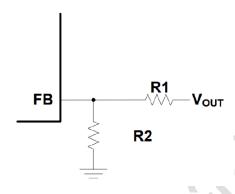
备注: 1,以上参数工作条件 VIN=60VDC

- 2, 当输入为 80VDC 时, 输出做 5V/2A 建议 D1,D2 并联使用
- 3, 前馈 RC 补偿, R3,C4 推荐值为 20K,1nF
- 4, C1,C5 根据实际纹波要求取值, 常规取 10nF-0.1uF

9. 电气特性

(除非特殊说明,下列条件均为 T_A =25℃)

<i>ነ</i> ት	说明	· 大人子:(mic	范围			英 於			
符号	远 明	测试条件	最小	典型	最大	单位			
VIN 工作部分									
I_{DD}	静态电流	VOUT=5V,VIN=48V	-	1.8	-	mA			
$I_{STANDBY}$	系统休眠待机电流	VOUT=5V,VIN=48V, FB 电阻未拆	-	10		uA			
V_{IN}	V _{IN} 电压范围		8	-	100	V			
U_{VLO}	欠压保护范围		7	- >	7.3	v			
恒压工作部分				.0					
V_{FB}	反馈电压			0.816		V			
恒流工作部分	恒流工作部分								
IPEAK	输出电流		-	3		A			
震荡器									
D _{MAX}	最大占空比		-	90	-	%			
F_{SW}	开关频率			350		KHz			
调光端口									
V_{EN_H}	使能信号阈值上限	EN rising	-	1	-	V			
$V_{\text{EN_L}}$	使能信号阈值下限	EN falling	-	0.9	-	V			
可靠性				•					
$T_{\mathrm{OTP_R}}$	热关断	输出关闭	-	150	-	°C			
T_{OTP_Hys}	热关断迟滞			20		°C			



10. 应用说明

Hi9216 是一款宽占空比范围异步降压 DC-DC 控制器,适用于 8-100V 电压输入情况。芯片采用我司专利算法控制,可以实现芯片对输入输出变化时快速响应,平衡动态和输出电压纹波的需求,以达到快速的动态响应和较低的输出电压纹波。

10.1. 输出电压

Hi9216 输出电压可以通过外部电阻设定。参考电压为 0.816V。反馈电路及公式如下图所示:

$$V_{OUT} = V_{FB}(R_1 + R_2) / R_2$$

10.2. 电感选择

电感公式如下:

$$L = \frac{(V_{IN} - V_{OUT}) * V_{OUT}}{\Delta I L * Fosc * I_{OUT} * V_{IN}}$$

电感峰值电流公示如下:

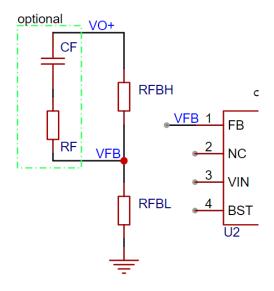
$$I_{PEAK} = I_{OUT*}(1 + \frac{1}{2}\Delta IL)$$

其中 ΔIL 为电感纹波电流系数,通常 ΔIL 取 0.2-0.4 之间; Fosc 为开关频率。

10.3. 输出电容选择

输出电容维持直流输出电压纹波。使用陶瓷,钽或低 ESR 电解电容。为了达到最好的效果,使用低 ESR 电容来保持输出电压纹波低。输出电压纹波的估计公式为:

$$\Delta V_{out} = \frac{V_{out}}{F_{osc} * L} * (1 - \frac{V_{out}}{V_{IN}}) * (R_{esr} + \frac{1}{8 * F_{osc} * C_{out}})$$


其中 L 为电感值, R_{ESR} 为输出电容的等效串联电阻 (ESR) 值。输出电容的特性也会影响调节系统的稳定性。

10.4. 过流点设置

芯片是逐周期限峰值电流,当电感电流 I>3A,关断此工作周期。

10.5. FB 前馈电容设定

 R_{FBH} 建议并接 RC 电路,建议参数为: $C_F = 1nF$, $R_F = 20 K \Omega$;

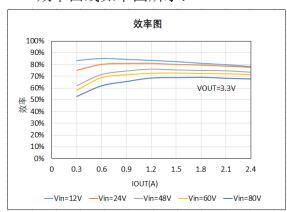
10.6. BST 电容

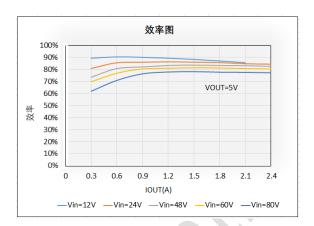
BST 电容并联在 BST 管脚和 SW 管脚之间,建议参数为: $C_{BST}=0.1uF$;

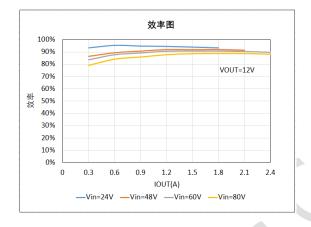
10.7. 使能功能 EN

EN 管脚为芯片的使能管脚,建议接上拉电阻大于 $360K\Omega$ 到 VIN;

10.8. 过温处理

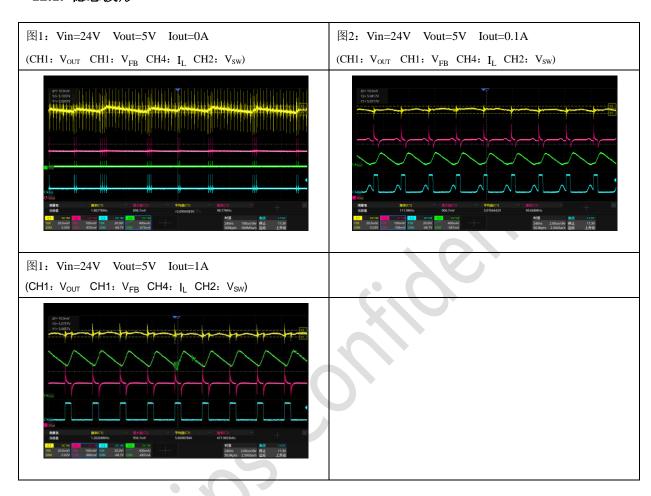

当芯片温度过高时,系统会进入内置的过温保护,关断输出,典型情况下当芯片内部温度达到 150℃ 以上时,过温保护开始起作用,关断输出,增强系统可靠性。



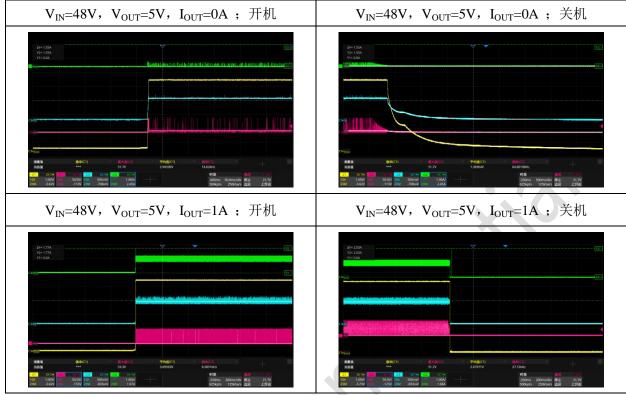


11. 典型特性曲线

效率曲线如下图所示:



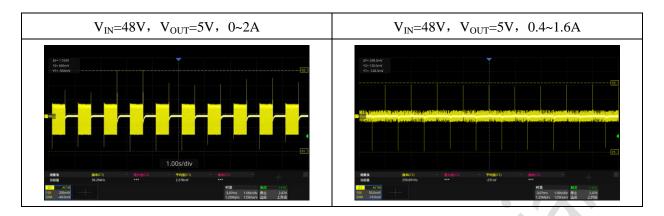
12. 工作波形图


12.1. 稳态波形

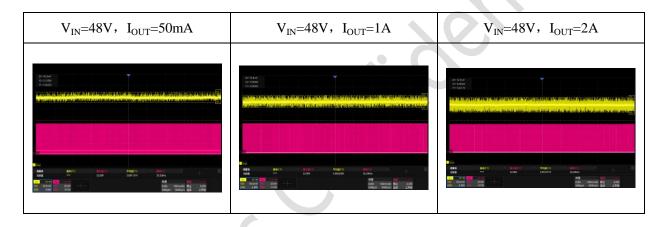
V1.2

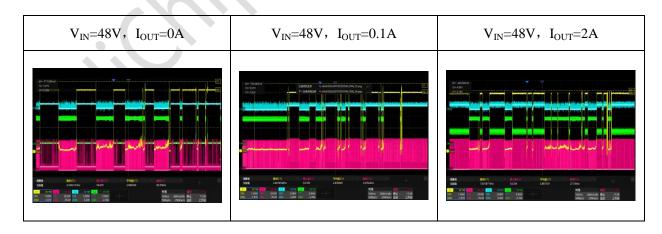
12.2. 开关机波形

CH1 (黄色): 输出电压 V_{OUT} ;

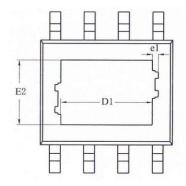

CH3(蓝色): FB 管脚电压波形;

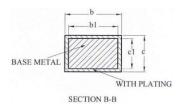
CH2(红色): 开关管脚 SW 电压 V_{SW} ;

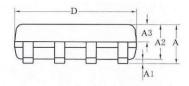

CH4 (绿色): 电感电流 I_L;

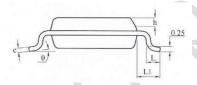

12.3. 动态波形

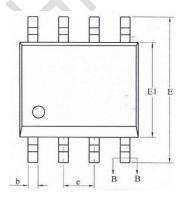
12.4. 纹波波形


12.5. 输出短路波形




Add WeChat




13. 封装信息

CVMDOL	MILLIMETER					
SYMBOL	MIN	NOM	MAX			
Α			1.65			
A1	0.05	-	0.15			
A2	1.30	1.40	1.50			
A3	0.60	0.65	0.70			
b	0.39		0.47			
b1	0.38	0.41	0.44			
c	0.20		0.24			
cl	0.19	0.20	0.21			
D	4.80	4.90	5.00			
Е	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
e		1.27BSC				
h	0.25	_	0.50			
L	0.50	0.60	0.80			
L1	1.05REF					
θ	0		8°			

Size (mm) L/F Size (mil)	D1	E2	e1	
95*130	3.10REF	2.21REF	0.10REF	

广晟微半导体(深圳)有限公司

- PAGE 14 -

VERSION: V1.2

