低压 5V DC 电机驱动

产品简述

MS31001D 是一款低压 5V 直流电机驱动芯片,为摄像机、 消费类产品、玩具和其他低压或者电池供电的运动控制类应用 提供了集成的电机驱动解决方案。

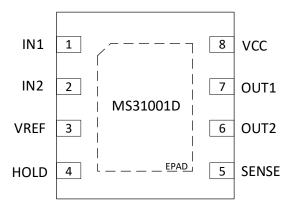
MS31001D 能提供高达 0.8A 的输出电流。可以工作在 2.0V~5.5V 的电源电压上。

MS31001D 具有 PWM (IN1/IN2)输入接口,与行业标准器件 兼容,并具有过温保护功能。

MS31001D 提供限流保持模式,且限定电流可调。

主要特点

- H桥电机驱动器
 - -- 驱动直流电机或其他负载
 - -- 低导通阻抗(HS+LS)1.1Ω
- 0.8A 驱动电流
- 电源电压 2.0V~5.5V
- 接口 PWM(IN1/IN2)输入模式
- 过温保护
- 限流保持模式,外部管脚调节电流大小
- 低电流睡眠模式(当 IN1=IN2=0 时进入)

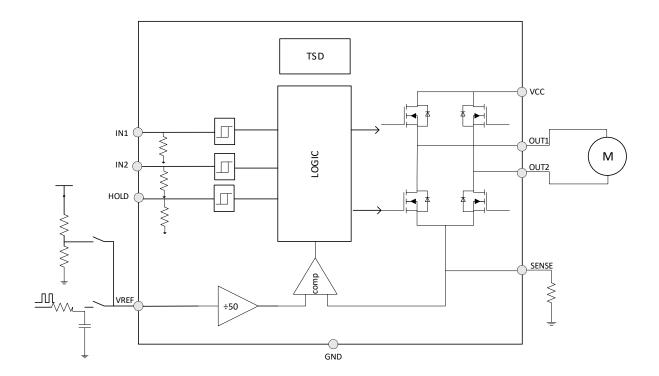

应用

- 摄像机
- 数字单镜头反光(DSLR)镜头
- 消费类产品
- 玩具

产品规格分类

产品	封装形式	丝印名称
MS31001D	DFN8	MS31001D

管脚图



管脚说明

管脚编号	管脚名称	管脚属性	管脚描述		
1	IN1	1	输入 1		
2	IN2	1	输入 2		
3	VREF	ı	限流模式电流设置		
4	HOLD	I	限流保持模式使能输入,低有效,默认低		
5	SENSE	I/O	功率地,电流检测点		
6	OUT2	0	H 桥输出 2		
7	OUT1	0	H 桥输出 1		
8	VCC	-	电源		
-	EPAD	-	散热片,接地		

2024.06.27

内部框图

http://www.gs-micro.com

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。无其他说明,T_A=25℃。

参数	符号	参数范围	单位
最大工作电压	Vcc	-0.3 ~ 5.5	V
控制输入电压范围	V _{INx,HOLD}	-0.5 ~ 5.5	V
VREF 输入范围	V _{REF}	0 ~ 2.75	V
驱动峰值电流	Імах	1.0	А
结温	TJ	-40 ~ 150	°C
存储温度	T _{STG}	-65 ~ 150	°C
ESD (HBM)	V _{ESD}	±6000	V

推荐工作条件

无其他说明,TA=25°C

参数	符号	测试条件	最小值	典型值	最大值	单位
逻辑电源	V _{CC}		2.0		5.5	٧
输出电流	Гоит	长时间持续电流	0		0.8	А
外部 PWM 频率	f _{PWM}		0		250	kHz
逻辑输入电压	VLOGIC		0		5.5	V
工作温度	T _A		-40		85	°C

2024.06.27

电气参数

电气特性

无其他说明,T_A=25°C, V_{CC}=5V

参数	符号	测试条件	最小值	典型值	最大值	单位
VCC 工作电压	V _{CC}		2.0		5.5	V
VCC 工作电流 1	lvcc	V _{cc} =5V,无 PWM		0.85	1.5	mA
VCC 工作电流 2	Ivccq	Vcc=5V, IN1=IN2=0 省电模式		0.01	1	μΑ
输出模块						
上臂+下臂桥导通电阻	R_{DSON}	V _{cc} =5V, I _o =500mA		1100	1200	mΩ
关断态漏电流	loff	V _{OUT} =0V	-200		200	nA
控制输入脚(IN1, IN2, HOLD)						
逻辑低输入电压	V_{IL}		0.20×V _{CC}	0.27×V _{CC}		V
逻辑高输入电压	V _{IH}			0.40×Vcc	0.5×V cc	V
输入逻辑迟滞	V_{HY}			0.13×Vcc		mV
逻辑低输入电流	IIL	V _{IN} =0	-5		5	μΑ
逻辑高输入电流	I _{IH}	V _{IN} =3.3V			50	μΑ
下拉电阻	R_{PD}			100		kΩ
过流保护			1	1		
VREF 输入电压范围	V_{VREF}		0		2.75	V
VREF 输入电流	Ivref				±1	μΑ
		V _{TRIP} 是限流保持模式 SENSE				
VREF 控制电流精度	Sref	脚过流反转电压,	-10		+10	%
		(V _{TRIP} -V _{REF} /50)/(V _{REF} /50)				
过流检测空白时间	t _{BLANK}			1.4		μs
限流模式 PWM 周期	tpwm			15.2		μs
保护电路			1	1		
过温保护	TSD		150	160	180	°C
过温保护迟滞	ΔTSD			22		°C

2024.06.27

时序要求

 T_A = 25°C, V_{CC} = 5V, R_L = 20 Ω

		范		
参数	符号	最小值	最大值	单位
启动时间	t1		10	μs
关断时间	t2		100	ns
输入高到输出高延迟	t3		100	ns
输入低到输出低延迟	t4		100	ns
输出上升沿	t5	10	100	ns
输出下降沿	t6	10	100	ns

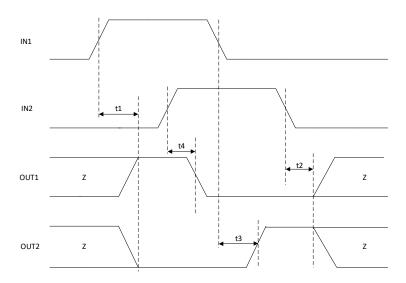


图 1. MS31001D 输入输出时间参数 1

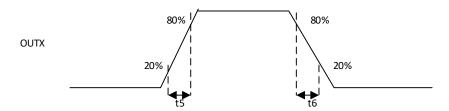


图 2. MS31001D 输入输出时间参数 2

功能描述

桥臂控制

MS31001D 由 PWM 输入接口控制,也被称作 IN/IN 输入模式,当输人脚 HOLD 置高时,其控制真 值表如下:

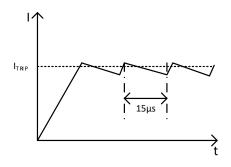
IN1	IN2	OUT1	OUT2	功能
0	0	Z	Z	Sleep 态
0	1	L	Н	反向
1	0	Н	L	正向
1	1	L	L	刹车

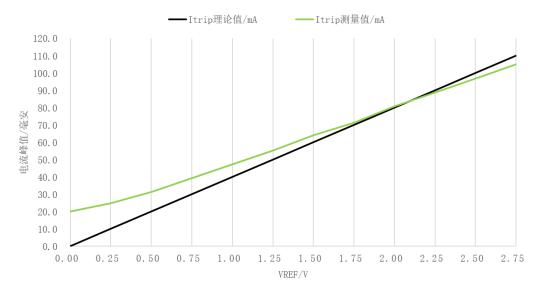
限流保持模式

正常模式下 HOLD 脚需要接高电平, 当输入脚 HOLD 置低或者悬空时,芯片进入限流保持模式。 此时逻辑控制与 H 桥的对应关系不变,但是当电流升高,从 SENSE 电阻上检测到 H 桥电流超过 ITRIP 值 时, H 桥进入衰减模式, 衰减持续约 15.2μs。通过这种循环检测的方式, 电流限流保持在一个固定 值。

衰减模式采用慢速衰减模式(H桥的两个下臂桥打开,类似于刹车态)。

为了防止错误检测到过流态,设置了 1.4us 的空白时间,在这段时间内,过流检测不起作用。




图 3. 限流保持模式衰减示意图

保持电流 ITRIP 计算:

H 桥电流流经 SENSE 电阻产生一个 VSENSE 电压,此电压进入比较器与 VREF/50 的电压信号相比较, 比较结果作为限流触发信号给内部逻辑,然后进入固定时间的衰减周期。所以计算公式为:

例: 当 R_{SENSE}=0.5Ω, V_{REF}=2.5V, 此时的限流保持 I_{TRIP} 电流为 100mA。 以下是 Rsense=0.5Ω,测试与理论计算的对比曲线,可作为设计参考。

IRIP 理论值与实测值对比

睡眠模式

当 IN1 与 IN2 不同时为低时,芯片正常工作。

当 IN1=IN2=0 时,芯片进入低功耗的睡眠模式,内部所有必要的电路都将停止工作。

输入脚

输入脚有内有 100kΩ 电阻下拉,默认为低电平输入。

应用上需要在 VCC 脚上接 10µF 的陶瓷电容对地,并且尽量靠近芯片。

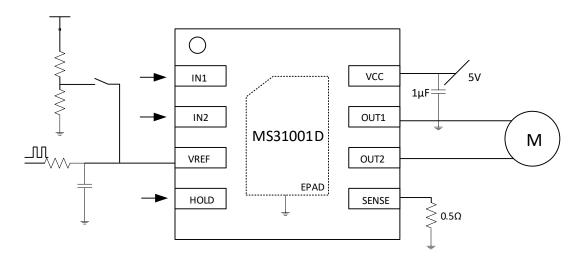
保护电路

过温保护

当芯片结温超过 160°C 时,过温保护电路被激活,关断所有输出管。当温度降低一个迟滞温度 20°C, 到达 140°C 时, 所有输出管恢复工作。

但是,由于过温保护仅仅在芯片结温超过设定值才会被激活,它并不能保证产品就能免受破坏。

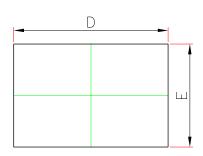
失效	条件	H 桥	恢复
过温保护	Tյ>160°C	关闭	T _J <140°C

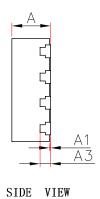

工作模式

MS31001D 在 IN1=IN2 都为低时,进入睡眠模式,在睡眠模式 H 桥全部关断,输出高阻态,芯片 电路大部分电路关断,进入省电模式。当 IN1 与 IN2 不同时为低时,自动恢复正常工作,在过温保护 检测到失效时同样关闭H桥。

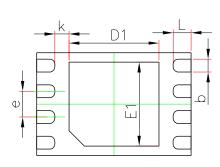
模式	条件	H 桥
工作	IN1 与 IN2 不同时为 0	工作
睡眠模式	IN1=IN2=0	关断
失效检测	INX=X	关断

典型应用电路图


MS31001D 典型应用原理图


- 芯片的"地"从底部散热片引出,注意PCB上散热片需要接"地"
- 在任何环境下都不能超过芯片的极限参数
- VCC 的旁路电容,特别是陶瓷电容的连接应该尽可能的靠近芯片 VCC 脚
- 连接电机的地线在版图设计中需要隔离

2024.06.27


封装外形图

DFN8

TOP VIEW

BOTTOM VIEW

<i>t</i> -tr. □	尺寸 (毫米)		尺寸(英寸)	
符号	最小值	最大值	最小值	最大值
А	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
А3	0.20	0.203REF		8REF
D	2.950	3.050	0.116	0.120
E	1.950	2.050	0.077	0.081
D1	1.650	1.850	0.065	0.073
E1	1.530	1.730	0.060	0.068
b	0.200	0.300	0.008	0.012
e	0.500BSC		0.020BSC	
k	0.27	0.275REF		1REF
L	0.300	0.400	0.012	0.016

印章与包装规范

1. 印章内容介绍

MS31001D

产品型号: MS31001D 生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS31001D	DFN8	3000	10	30000	4	120000

PAGE 12 - VERSION: V1.3 2024.06.27

广晟微半导体(深圳)有限公司

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受 静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

2024.06.27